Department of Physics Tripura University (A Central University)

Curricular Plan

Academic Year 2020 - 21

Semester	Paper and Topics	Teaching Methodology
	PH-701C: Mathematical Physics: Credit=04	Online class teaching. PDF notes and question banks are provided
	Group A [NLP=14]:	to the students.
	Functions of a Complex variable and Complex algebra	PDF of related chapters from tex
Ι	Group B [NLP=25]:	and reference books are provided
	Group Theory. Differential Equations, Green's function, Dirac Delta Function, Group Theory	to the students.
	Special Functions: Gamma functions. Bessel functions of first kind. Legendre functions. Associated Legendre functions. Spherical	
	harmonics. Hermite functions. Laguerre functions. Hypergeometric functions. Integral Transforms: Laplace transform;; Fourier series;	
	Fourier integral and transforms.	
	PH-703C:	Online class teaching. PDF notes
	Computer Programming & Basic Electronic design practical	and question banks are provided
	Credit=04: For my part, Credit=02	to the students.
	Group A Theory: 20 NLP + Practical [NLP=75+75 for two group of students]: Computer Programming	PDF of related chapters from tex
	LINUX	and reference books are provided
т	Syntax of GFORTRAN language:	to the students.
1	With problems from setI to set-IX.	
	Numerical Analysis: Theory: Solution of nonlinear equations; iteration; bisection method; secant method; Newton - Raphson method.	
	Interpolation: Lagrange's interpolation; numerical differentiation, Numerical integration, Riemann, trapezoidal and Simpson's rules;	
	Solution of linear simultaneous equations - Gauss elimination; Gauss - Jordan elimination. Matrix algebra; eigen values and	
	eigenfunctions of matrices.	
	PH-1001C: Condensed Matter Physics: Credit=04	Online class teaching. PDF note
		and question banks are provided
	Group A [NLP=25]:	to the students.
IV	Crystal Physics, Interaction of X – rays with matter, The reciprocal lattice. The Laue, powder and rotating crystal methods. Crystal	PDF of related chapters from tex
	structure factor Point Group. Crystal Defect. Lattice Vibration. Lattice specific heat, Free Electron Theory.	and reference books are provided
	Group B [NLP=25]:	to the students.
	Dielectric Functions and Ferroelectric, Optical Processes and Excitons, Band Theory of Solids	

	Magnetic Properties of solid, Superconductivity	
	PH-1004E: Advanced Physics	Online class teaching. PDF notes
	Credit=04: For my part, Credit=01	and question banks are provided
IV		to the students.
IV	Group B [NLP=10]: UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, FTIR, Brewster Angle Microscopy (BAM),	PDF of related chapters from text
	Fluorescence Imaging Microscopy (FIM)), applications of thin films.	and reference books are provided
		to the students.
	PH 1003C: Project work : Credit=06	One topic is allotted to each
	Project work for 4 th Semester students	student and they investigate the
		problem on the basis of literature
IV		survey and some laboratory
		work. Finally, they prepare a
		dissertation on the work done
		and give a presentation

Prof. Sury	Prof. Surya Chattopadhyaya			
Semester	Paper	Topics	Teaching Methodology	
Ι	PH-702C: Classical Mechanics Credit=04	 Group A [NLP=25]: Review of Newtonian mechanics Lagrangian formulation and its applications Rotating Frame of References Rigid body motion Hamilton's principle and its applications Group B [NLP=25]: Small oscillation in couples systems Hamiltonian formulation and its applications Canonical transformation Hamilton-Jacobi theory Action-angle variables Lagrangian and Hamiltonian formulation of continuous system 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.	
Ι	PH-703C: Computer	Group B [NLP=75+75] for two group of	Instruction manuals, Pin diagrams of different ICs,	

	Programming & Basic Electronic design practical Credit=04 For my part, Credit=02	 students]: Construction of power supply (±12 V & +5 V) Design and study of different logic gates with both discrete components and digital ICs (74**). Design and study of different adder and subtractor circuits with ICs. Design and study of different amplifier and filter circuits using OP-AMP(IC-741/536/555) Designing and study of common emitter (CE) amplifier circuit with NPN/PNP transistor. Designing and study of emitter follower (CC) amplifier circuit with NPN/PNP transistor 	Transistors will be provided before commencement of the practical classes. Hard copies of related chapters from text and reference books will be provided to the students. Traditional Classroom mode of teaching will be conducted before each experiment to explain the details of each circuit. Hands-on demonstration of design & study of each circuit will be done by the teacher before allowing students to handle it.
II	PH-802C: Statistical Mechanics Credit=04	 Group A [NLP=25]: Foundations of statistical mechanics Macro & microstates, thermodynamic probability. Classical statistics of ensembles Foundation of quantum statistics Density matrix & its applications Group B [NLP=25]: Statistics of indistinguishable particles Features and applications of BE & FD statistics Fluctuations and transport phenormena Cluster expansion for a classical 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.

		non-ideal gas Ising model Phase transition 	
III	PH-902C: Atomic & Molecular Physics Credit=04 For my part, Credit=02	 Group B [NLP=25]: Molecular Physics Fundamentals of molecular spectroscopy Microwave spectroscopy Infrared spectroscopy Raman spectroscopy Electronic spectra Mossbauer spectroscopy 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH-1004E: Advanced Physics Credit=04 For my part, Credit=01	 Group B [NLP=13]: Introductory theoretical chemical physics Approximation methods in quantum mechanics. Pre & post Hartree-Fock approximations. Density Functional Theory (DFT) & its applications 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH 1003C: Project work Credit=06	Project work for 4 th Semester students	One topic will be allotted to each student and they will investigate the problem on the basis of literature survey and some laboratory work. Finally, they will prepare a dissertation on the work done and give a presentation. The assessment will be made on the basis of the dissertation, presentation and viva-voce.

Prof. Syc	Prof. Syed Arshad Hussain			
Semester	Paper	Topics	Teaching Methodology	
Ι	PH-701C: Mathematical Physics	Group A [NLP=11]: Matrices And Tensors	Online teaching using Google Meet and Tripura University LMS during COVID-19 period. Class note are give through website https://arshadnotes.wordpress.com/matrix/	
Π	PH-801C: Basic Electronics PH-904C: Advanced	Group A [NLP=25]: Bipolar devices, Field-effect transistor, Microwave device, Photonic device, Memory device, Operational Amplifiers (OPAMP) applications Group B [NLP=25]: Analog circuits, Feedback amplifiers, Power circuits and system, Power supply, Communication Electronics. Practical paper [NLP=75]:	Online teaching using Google Meet and Tripura University LMS during COVID-19 period. Class note are give through website https://arshadnotes.wordpress.com/electronics-i/	
	Practical – I	Experiments based of solid state devices	LMS during COVID-19 period. Practical experiments will be demonstrated through virtual lab Students will perform each experiments through virtual lab	
	PH-903C: Atomic & Molecular Spectroscopy	Group A [NLP=25]: Atomic Spectroscopy, Lasers	Online teaching using Google Meet and Tripura University LMS during COVID-19 period. Class note are give through website https://arshadnotes.wordpress.com/atomic-spectroscopy/	
III	PH-1004C: Advanced Practical - III	Practical Paper [NLP=150]: Experiments based of Advanced Electronic Design	Online tutorial using Google Meet and Tripura University LMS during COVID-19 period. Practical experiments will be demonstrated through virtual lab Students will perform each experiments through virtual lab	
IV	PH-1002C: Advanced Electronics PH-1004E: Advanced	Group A (NLP=14): Analog to Digital Conversion, Simplifying Logic Circuit & Mapping & code conversion Group B [NLP=10]	Online teaching using Google Meet and Tripura University LMS during COVID-19 period. Class note are give through website https://arshadnotes.wordpress.com/electronics-ii/	
	PH-1004E: Advanced Physics	Group B [NLP=10] Importance of thin films, different thin	Online teaching using Google Meet and Tripura University LMS during COVID-19 period.	

	by-Layer (LbL) Self Assembly, Atomic Force Microscopy (AFM), Application of	Class note are give through website https://arshadnotes.wordpress.com/phys-1004e-advance- physics/
	thin films	

Dr Anirba	Dr Anirban Guha			
Semester	Paper	Topics	Teaching Methodology	
II	PHYS-805E: Microprocessor	Introduction to 8085 hardware, programming in assembly level	Online teaching using Google Meet and Tripura University LMS during COVID-19 period.	
	Architecture and Programming	language, practical using microprocessor kit and simulator [NLP=50]		
III	PHYS-901C: Electrodynamics and Plasma Physics	Maxwell's equation, inhomogeneous wave equations, electrostatic multipole expansion, dielectrics, plasma physics [NLP=40]	Online teaching using Google Meet and Tripura University LMS during COVID-19 period.	
	PHYS-904C: Advanced Practical -III	Experiments based of Advanced Electronic Design[NLP=150]	Online teaching using Google Meet and Tripura University LMS during COVID-19 period.	
	PH-1002C: Advanced Electronics	Digital communication, modulation techniques, fiber optic communication, satellite communication, optoelectronics [NLP=30]	Online teaching using Google Meet and Tripura University LMS during COVID-19 period.	
IV	PHYS 1004C: Project Work	Experimental works related to electronic design and advanced programming using open source language [NLP=50]	Online teaching using Google Meet and Tripura University LMS during COVID-19 period.	
	PHYS 1004E: Advanced Physics	Basics of atmospheric science, instrumentation [NLP=12]	Online teaching using Google Meet and Tripura University LMS during COVID-19 period.	

Dr Rata	Dr Ratan Das				
Semester	Paper	Topics	Teaching Methodology		
Π	PH-801C: Basic Quantum Mechanics	Group A [NLP=25]:Dirac formalism, unitary operator, Timeevolution operator, number operator,annihilation and creation operator andtheir matrix representation, Unitarytransformation, Basis change, DifferentPicture, symmetries and equation ofmotionSolving simple harmonicoscillator problem by algebraic method.Group B [NLP=25]:Orbital angular momentum operator,Pauli spin matrices and its eigen-functions as spherical harmonics.Free particle and its partial waveexpansion.Time independent perturbation theory,Variational Method and WKBapproximation, Anharmonic oscillator.	Both Onlineand traditional teaching Soft copy of class notes and related materials should be provided before each lecture in the LMS		
Π	PH-804C: Advanced Practical - II	Practical paper [NLP=75]: Experiments related to detection of radiation, magnetism and solid state physics	Virtual lab would be used for the practical purpose		
III	PH-903C: Nuclear Physics and Particle Physics	Group A [NLP=25]:Basic nuclear concepts, Isospinformalism.Nuclear Force and Deuteron Problem,Nucleon-Nucleon scattering, exchangeforces, Yukawa interaction, Nuclear	Both Onlineand traditional teaching Soft copy of class notes and related materials should be provided before each lecture in the LMS Online classes and teaching would be arranged using different ICT based tools such as google meet, recorded		

	PH-905E: Advance Quantum mechanics	ReactionsShell model, magnetic moments andSchmidt lines; Collective model of thenucleus.Different counters and detectors andGroup B [NLP-25]Interaction of alpha radiation withmatter- Gamma interaction with matter,Mossbauer effect.Gammow's theory; Fermi's theory ofbeta decayElementary Particles Hadrons, Mesonsand leptons, CP and CPT invariance,Quark model.Group A [NLP-25]Space translation operator, Hamiltonianas the generator of time translation.Addition of Angular momentum andClebsch Gordon Coefficients.Formal theory scattering amplitude,differential and total cross section,Optical theorem. Born approximation andpartial wave analysis.Time dependent perturbation theory:Interaction picture. Adiabatic and Suddenapproximation.	 video lectures, online repositories. Various tools such as google form, google doc etc. would be used for the purpose of teaching Traditional classroom teaching along with online teaching Soft copy of class notes and related materials should be provided before each lecture in the LMS. Online classes and teaching would be arranged using different ICT based tools such as google meet, recorded video lectures, online repositories. Various tools such as google form, google doc etc. would be used for the purpose of teaching
IV	PH-1001C :	Group B (NLP=12): Magnetic Properties: Diamagnetism. Quantum theory of paramagnetism. Paramagnetic properties of solids. Heisenberg's theory. Saturation	Traditional classroom teaching along with online teaching Soft copy of class notes and related materials should be provided before each lecture in the LMS. Online classes and teaching would be arranged using

	magnetization. Magnons. Ferromagnetic and antiferromagnetic systems. Domains. Magnetic bubble domains. Superconductivity: Meissner effect. Heat capacity. Isotope effect. London's	different ICT based tools such as google meet, recorded video lectures, online repositories. Various tools such as google form, google doc etc. would be used for the purpose of teaching
PH-1004E: Advanced Physics	equation. BCS theory (qualitative ideas). Group C[NLP=12]: Different nanomaterials and their special properties. Quantum Dots. X-Ray Diffractometer and its principle: Structural Characterization, Morphological analysis by electron microscopy. Different Application of nanomaterials including photonics and plasmonics.	provided before each lecture in the LMS. Online classes and teaching would be arranged using different ICT based tools such as google meet, recorded