Department of Physics Tripura University (A Central University)

Curricular Plan

Academic Year 2016 - 17

Prof. De	bajyoti Bhattacharjee	
Semester	Paper and Topics	Teaching Methodology
Ι	 PH-701C: Mathematical Physics: Credit=04 Group A [NLP=14]: Functions of a Complex variable and Complex algebra Group B [NLP=25]: Group Theory. Differential Equations, Green's function, Dirac Delta Function, Group Theory Special Functions: Gamma functions. Bessel functions of first kind. Legendre functions. Associated Legendre functions. Spherical harmonics. Hermite functions. Lagguerre functions. Hypergeometric functions. Integral Transforms: Laplace transform;; Fourier series; Fourier integral and transforms. 	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
I	PH-703C: Computer Programming & Basic Electronic design practical Credit=04: For my part, Credit=02 Group A Theory: 20 NLP + Practical [NLP=75+75 for two group of students]: Computer Programming LINUX Syntax of GFORTRAN language: With problems from setI to set-IX. Numerical Analysis: Theory: Solution of nonlinear equations; iteration; bisection method; secant method; Newton - Raphson method. Interpolation: Lagrange's interpolation; numerical differentiation, Numerical integration, Riemann, trapezoidal and Simpson's rules; Solution of linear simultaneous equations - Gauss elimination; Gauss - Jordan elimination. Matrix algebra; eigen values and eigenfunctions of matrices.	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students. Set-I to Set-IX of programming questions and solutions are given in PDF format.
IV	 PH-1001C: Condensed Matter Physics: Credit=04 Group A [NLP=25]: Crystal Physics, Interaction of X – rays with matter, The reciprocal lattice. The Laue, powder and rotating crystal methods. Crystal structure factor Point Group. Crystal Defect. Lattice Vibration. Lattice specific heat, Free Electron Theory. Group B [NLP=25]: Dielectric Functions and Ferroelectric, Optical Processes and Excitons, Band Theory of Solids Magnetic Properties of solid, Superconductivity 	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
IV	PH-1004E: Advanced Physics Credit=04: For my part, Credit=01	Traditional classroom teaching. PDF notes and question banks as

	Group B [NLP=10]: UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, FTIR, Brewster Angle Microscopy (BAM), Fluorescence Imaging Microscopy (FIM)), applications of thin films.	well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
IV	PH 1003C: Project work : Credit=06 Project work for 4 th Semester students	One topic is allotted to each student and they investigate the problem on the basis of literature survey and some laboratory work. Finally, they prepare a dissertation on the work done and give a presentation

Prof. Sury	ya Chattopadhyaya		
	I		
Semester	Paper	Topics	Teaching Methodology
	PH-702C: Classical	Group A [NLP=25]:	Traditional classroom teaching. PDF notes as well as
	Mechanics	Review of Newtonian mechanics	their hard copies will be provided before each lecture.
		Lagrangian formulation and its	Hard copies of related chapters from text and reference
	Credit=04	applications	books will be provided to the students.
		Rotating Frame of References	Question Bank and List of Numerical Problem will also
		Rigid body motion	be supplied.
		• Hamilton's principle and its	
		applications	
Ι		Group B [NLP=25]:	
		• Small oscillation in couples systems	
		Hamiltonian formulation and its	
		applications	
		Canonical transformation	
		Hamilton-Jacobi theory	
		• Action-angle variables	
		Lagrangian and Hamiltonian	
		formulation of continuous system	

	PH-703C: Computer	Group B [NLP=75+75] for two group of	Instruction manuals, Pin diagrams of different ICs,
	programming & Basic	students]:	Transistors will be provided before commencement of
	Electronic design	• Construction of power supply (±12	the practical classes.
	practical	V & +5 V)	Hard copies of related chapters from text and reference
Ι	Credit=04 For my part, Credit=02	 Design and study of different logic gates with both discrete components and digital ICs (74**). Design and study of different adder and subtractor circuits with ICs. Design and study of different amplifier and filter circuits using OP-AMP(IC-741/536/555) Designing and study of common emitter (CE) amplifier circuit with NPN/PNP transistor. Designing and study of emitter 	books will be provided to the students. Traditional Classroom mode of teaching will be conducted before each experiment to explain the details of each circuit. Hands-on demonstration of design & study of each circuit will be done by the teacher before allowing students to handle it.
		follower (CC) amplifier circuit with	
		NPN/PNP transistor	
	PH-802C: Statistical	Group A [NLP=25]:	Traditional classroom teaching. PDF notes as well as
	Mechanics	• Foundations of statistical mechanics	their hard copies will be provided before each lecture.
		• Macro & microstates,	Hard copies of related chapters from text and reference
	Credit=04	thermodynamic probability.	books will be provided to the students.
		Classical statistics of ensembles	Question Bank and List of Numerical Problem will also
		 Foundation of quantum statistics 	be supplied.
П		• Density matrix & its applications	
		Group B [NLP=25]:	
		• Statistics of indistinguishable	
		particles	
		• Features and applications of BE &	
		FD statistics	
		Fluctuations and transport	
		phenormena	

		 Cluster expansion for a classical non-ideal gas Ising model Phase transition 	
III	PH-902C: Atomic & Molecular Physics Credit=04 For my part, Credit=02	 Group B [NLP=25]: Molecular Physics Fundamentals of molecular spectroscopy Microwave spectroscopy Infrared spectroscopy Raman spectroscopy Electronic spectra Mossbauer spectroscopy 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH-1004E: Advanced Physics Credit=04 For my part, Credit=01	 Group D [NLP=13]: Introductory theoretical chemical physics Approximation methods in quantum mechanics. Pre & post Hartree-Fock approximations Density Functional Theory (DFT) & its applications 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH 1003C: Project work Credit=06	Project work for 4 th Semester students	One topic will be allotted to each student and they will investigate the problem on the basis of literature survey and some laboratory work. Finally, they will prepare a dissertation on the work done and give a presentation. The assessment will be made on the basis of the dissertation, presentation and viva-voce.

Dr. Syed	Arshad Hussain		
Semester	Paper	Topics	Teaching Methodology
Ι	PH-701C: Mathematical Physics	Group A [NLP=11]: Matrices And Tensors	Traditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/matrix/
II	PH-801C: Basic Electronics	Group A [NLP=25]: Bipolar devices, Field-effect transistor, Microwave device, Photonic device, Memory device, Operational Amplifiers (OPAMP) applications Group B [NLP=25]: Analog circuits, Feedback amplifiers, Power circuits and system, Power supply, Communication Electronics.	Traditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/electronics-i/
	PH-904C: Advanced Practical – I	Practical paper [NLP=75]: Experiments based of solid state devices	Handout will be provided before each practical Tutorial class will be arranged Practical experiments will be demonstrated Students will perform each experiments
III	PH-903C: Atomic & Molecular Spectroscopy	Group A [NLP=25]: Atomic Spectroscopy, Lasers	Traditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/atomic-spectroscopy/
	PH-1004C: Advanced Practical - III	Practical Paper [NLP=150]: Experiments based of Advanced Electronic Design	Handout will be provided before each practical Tutorial class will be arranged Practical experiments will be demonstrated Students will perform each experiments
IV	PH-1002C: Advanced Electronics	Group A (NLP=14): Analog to Digital Conversion, Simplifying Logic Circuit & Mapping & code conversion	Traditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lecture Class note are give through website

		https://arshadnotes.wordpress.com/electronics-ii/
PH-1004E: Advanced Physics	Group B [NLP=10] Importance of thin films, different thin film preparation techniques: Spin Coating, Langmuir-Blodgett (LB), Layer- by-Layer (LbL) Self Assembly, Atomic Force Microscopy (AFM), Application of thin films	Traditional classroom teaching using whiteboard and overhead projector when required. Demonstration of research laboratory instruments. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/phys-1004e-advance- physics/

Dr. Anirb	an Guha		
Semester	Paper	Topics	Teaching Methodology
	PHYS-805E:	Introduction to 8085 hardware,	Traditional classroom teaching using whiteboard and
П	Microprocessor	programming in assembly level	overhead projector when required.
11	Architecture and	language, practical using microprocessor	
	Programming	kit and simulator [NLP=50]	
	PHYS-901C:	Maxwell's equation, inhomogeneous	Traditional classroom teaching using whiteboard and
	Electrodynamics and	wave equations, electrostatic multipole	overhead projectorwhen required.
ш	Plasma Physics	expansion, dielectrics, plasma physics	
111		[NLP=40]	
	PHYS-904C: Advanced	Experiments based of Advanced	Traditional laboratory teaching using whiteboard and
	Practical -III	Electronic Design[NLP=150]	overhead projector when required.
	PH-1002C: Advanced	Digital communication, modulation	Traditional classroom teaching using whiteboard and
	Electronics	techniques, fiber optic communication,	overhead projectorwhen required.
		satellite communication, optoelectronics	
		[NLP=30]	
IV	PHYS 1004C: Project	Experimental works related to electronic	Traditional classroom and laboratory teaching using
1 V	Work	design and advanced programming using	whiteboard and overhead projector when required.
		open source language [NLP=50]	
	PHYS 1004E:	Basics of atmospheric science,	Traditional classroom teaching using whiteboard and
	Advanced Physics	instrumentation [NLP=12]	overhead projector when required. Demonstration of
			research laboratory instruments.

Dr. Ratan	Dr. Ratan Das			
Semester	Paper	Topics	Teaching Methodology	
Ι	PH-701C: Mathematical Physics	Group B [NLP=11]: Special functions and Group theory	Traditional classroom teaching Hard copy of class notes and related materials would be provided before each lecture	
II	PH-801C: Basic Quantum Mechanics	Group A [NLP=25]: Dirac formalism, unitary operator, Time evolution operator, number operator, annihilation and creation operator and their matrix representation, Unitary transformation, Basis change, Different Picture, symmetries and equation of motionSolving simple harmonic oscillator problem by algebraic method. Group B [NLP=25]: Orbital angular momentum operator, Pauli spin matrices and its eigen- functions as spherical harmonics. Free particle and its partial wave expansion. Time independent perturbation theory, Variational Method and WKB approximation Anharmonic oscillator	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.	
II	PH-806E: Astrophysics and Astronomy	Group A [NLP=20]: Magnitude systems, Color index; Different Constellations: Saha's equation; spectral classification; H-R Diagram; X-ray, UV, IR, and Radio Telescope, Photometry and polarimetry, Astronomical Co-ordinates and Celestial	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.	

		Mechanics:	
		Star formation in Interstellar medium	
		(ISM), Hydrostatic equilibrium,	
		Group B: [NLP-20]	
		Massive stars, White dwarfs,	
		Chandrasekhar limit, Neutron stars and	
		pulsars, Black Holes.	
		Standard Cosmological model, Dark	
		Matter and Dark Energy, Gamma ray	
		bursts, Gravitational Waves.	
		Curved space-time, Einstein's Field	
		equations.	
	PH-804C: Advanced	Practical paper [NLP=75]:	Manuals of each experiments along with details
	Practical - II	Experiments related to detection of	experimental procedure of each experiments would be
II		radiation, magnetism and solid state	provided.
		physics	Practical experiments should be demonstrated
			So that students can perform each experiments.
	PH-903C: Nuclear	<u>Group A [NLP=25]:</u>	Traditional classroom teaching
	Physics and Particle	Basic nuclear concepts, Isospin	Hard copy of class notes and related materials should be
	Physics	formalism.	provided before each lecture
		Nuclear Force and Deuteron Problem,	
		Nucleon-Nucleon scattering, exchange	
		forces, Yukawa interaction, Nuclear	
		Reactions	
Ш		Shell model, magnetic moments and	
		Schmidt lines; Collective model of the	
		nucleus.	
		Different counters and detectors and	
		Group B [NLP-25]	
		Interaction of alpha radiation with	
		matter- Gamma interaction with matter,	
		Mossbauer effect.	
		Gammow's theory; Fermi's theory of	

		beta decay Elementary Particles Hadrons, Mesons and leptons, CP and CPT invariance,	
		Quark model.	
	PH-905E: Advance	Group A [NLP-25]	Traditional classroom teaching
	Quantum mechanics	Space translation operator, Hamiltonian as the generator of time translation. Addition of Angular momentum and Clebsch Gordon Coefficients. Formal theory scattering amplitude, differential and total cross section, Optical theorem. Born approximation and partial wave analysis.	Hard copy of class notes and related materials should be provided before each lecture.
		Time dependent perturbation theory: Interaction picture. Adiabatic and Sudden approximation.	
IV	PH-1001C :	Group B (NLP=12): Magnetic Properties: Diamagnetism. Quantum theory of paramagnetism. Paramagnetic properties of solids. Heisenberg's theory. Saturation magnetization. Magnons. Ferromagnetic and antiferromagnetic systems. Domains. Magnetic bubble domains. Superconductivity: Meissner effect. Heat capacity. Isotope effect. London's equation. BCS theory (qualitative ideas).	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.
	PH-1004E: Advanced Physics	<u>Group C[NLP=12]</u> : Different nanomaterials and their special properties. Quantum Dots. X-Ray Diffractometer and its principle:	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.

Structural Characterization,	
Morphological analysis by electron	
microscopy. Different Application of	
nanomaterials including photonics and	
plasmonics.	